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We have developed an analytical method of calculating the heat-transfer coefficients, the
boundary-layer thicknesses, and the temperature and velocity distributions in the boundary
layer for the quasisteady free convection in closed axisymmetric spaces for a given heat-
flux density at the boundary. We have derived experimental relationships for the heat-
transfer coefficient in the case of free convection in a sphere.

Very little research has been done on the free convection in closed spaces at whose surfaces the heat~
flux density is known. In [1] we find an investigation of convection in a sphere for a laminar regime, with
the sphere heated by steam; in [2] the study deals with convection between two spheres.

Let us examine a closed axisymmetric vessel filled with an incompressible viscous fluid exhibiting an
initial temperature T;. Let the heat-flux density q be specified at the vessel surface S for t > 0; x and y
are, respectively, the longitudinal and transverse coordinates, associated with the surface of the vessel.

We assume that the following conditions are satisfied:
a) the flow of the liquid is quasisteady, laminar, axisymmetric, or plane;

b} the Grashof number is substantially greater than unity and the Prandtl number is on the order of
unity;

c¢) the entire area occupied by the liquid can be divided into two subregions: the boundary layer of
thickness 0 and the main core;

d) the liquid flow in the core is ideal;

e) the temperature of the core is equal to the mean-volume temperature of the liquid;

f) the thickness of the thermal boundary layer is equal to the thickness of the dynamic boundary layer;
g) the thickness of the boundary layer is a constant quantity;

h) the thermophysical properties of the liquid are independent of temperature .

We will seek the liquid temperature T and the liquid velocity v in the following form:

T Tyt yt+3(X, Y, 2),

v=v{X, Y, 2, @

where X, Y, and Z are Cartesian coordinates; v =Q/V.

Having substituted (1) into the equation for nonsteady free convection [3] and using hypotheses a)
through g), as well as boundary -layer theory [4], we derive the following equations:
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and the boundary conditions
0
u{y=0 = 0, Ul"=0 = O, u],,:a = f, .___L_l_ — 0’
W (3)
TJ‘y:ﬁ = 0, ——a—‘c— = 0’ _gf. = ___q(x)
i y=>2 ay y=0

Here it is assumed that the heat from the walls is transported to the boundary layer and we then have a
transfer of mass and heat from the boundary layer to the core.

We will use the method of integral relationships [4] to solve problem (2)-(3).

The profile for the temperature 7 will be sought in the following form:

2 3 4
":To‘i‘ri%"f‘fz(%) () (4 @
We find the coefficients 7, 7, Ty, 73, and 74 from the following conditions:
dr d*t
T, =3 = 0» - =Ny —/— =Y,
Y ay y=0 ayz y=0
(9)
Tl o, TE] =y
ay y=0 ' ay2 y=0
- 0%t 0% I .
Conditions —— = - = y are found by substitution of (3) into (2").
0y® |y—s 0? |y=o

Substituting (4) into (5), we find
yd?
2 r

To:? g T=—4qb 1=

5 (6)
T3 =0{(g—v0), 1, = o (v8 —q).

We seek the profile of the longitudinal velocity component in the form

N1 2 3
=4+ 4 (%) +1 (%) +A3(-g—> : (7
We find the coefficients A, f;, A,, and A; from the conditions
ou
uy=s = I, Uly—0 =0, 7 0,
=5
! (8)
o%u __ GrPr Odg
0y ly=o 2
2
The condition % = ——Er—-p;ﬂ(z is found by substituting (3) into (2").
Y y=0

Substituting (7) into (8) yields

A= o fm o fo fi=— o GrPrOY®, A= —— A —— 1,

= ST a2 3]
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TABLE 1. Values of the Integral Heat-Transfer Coefficients and
the Thicknesses of the Thermal Boundary Layer as Functions of
the Grashof and Prandtl Numbers

Ra
Pr 107 10¢ 10¢ 1ot
5 | M O A 8 Nu 5 Nu
1 0,0847 23,61 0,0549 36,41 0,0352 56,75 0,0143 140,14
2 0,0846 23,64 0,0549 36,45 0,0352 56,80 0,0143 140,26
3 0,0846 23,64 0,0548 36,46 0,0352 56,82 0,0143 140,30
4 0,0846 23,65 0,0548 36,47 0,0352 56,84 0,0143 140,30

TABLE 2. Value of the Longitudinal Velocity
Component for the Core at the Edge of the
Thermal Boundary Layer

We integrate (2') and (2") with respect to y from
0 to 8, using hypothesis h) and, having substituted into
the derived equations (4) and (9), we obtain a system
of two algebraic equations for 6 and f.

Ra ‘ 107 ‘ 108 10° 1 104

We calculate the dimensionless integral coef-
ficient of heat transfer on the basis of the formula

|
! ‘ 3245 1 855,1 2176 | 13360
| Lid
Nu— 9 ly=o (10)
Tly=o
Substituting (4) into (10), we obtain
2
Nu= =, 11
! 5 (1L)

On the basis of hypothesis g), in this case all of the dimensionless local heat-transfer coefficients are equal
to the dimensionless integral heat-transfer coefficient.

Let us examine a special case of this problem — the quasisteady free thermal convection in a sphere
at whose surface a constant heat-flux density is specified.

In this case
gx) =1, ro(x) =sinx, O®(x) =sinx, y =3, Ra=—GrPr.

The equations for 6 and f in this case have the form

pi
f= B, 12y
—0.557143 8°P, (8) + P {0) P, (8)[6 Pr— 0.535715-1072 Ra 6%
Raprés o I T 9
— —— P5(8) +— Pr&tP?(8) + — RaPrP;(8) 8% =0, 12w
1630 2()+20 Ra Pr (H’40 r P3(9) azm

where
P, (6) = —0.1339285-1072 Ra 8% + 0.017113095 Ra 8° — 2 + 66;

P, (8) = 62[1,15535715 — 0.066071436].

The roots of Eq. (12") were calculated on the M-20 computer in accordance with the Mueller method
[5] Ra = 107-10'"! and Pr = 1-5. As a result of the calculations we found that (12") has eight complex roots
and four real roots, one of which is less than unity. This smallest real root of (12") was taken as the thick-
ness of the thermal boundary layer. The results from the calculation of the thermal boundary-layer thick-
ness § and for Nu are shown in Table 1.

We see from Table 1 that the heat-transfer coefficient is virtually an exclusive function of the Ray-
leigh number. Using the data of Table 1, we can demonstrate that a linear relationship exists between
InNu and InRa. As a result of the processing of these data, we find that

13"
asm

Nu = 1,044 Ra%1%%,
§ =192 Ra 1%,
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TABLE 3. Temperature Distribution in the Thermal Boundary
Layer and the Values of the Heat-Transfer Coefficients

x° 4] 22,5 45 67,5 112,5 135 157,5 180

Ethyl alcohol, Ra=1,8.1011; R=0,15m; ¢=8,4.10® W/m?

AT deg 4,2 | 4,8 4,1 3,1 3,8 4,5 3,5 3,9
AT"deg 4,7 | 4,8 4,7 4.9 5 4,5 3,8 4,6
AT ™deg 4,7 | 4,8 4,7 4,9 5 5 5,3 6,0
a.10°2 1,8 1,7 | 1,8 1,7 1,7 1,8 1,6 1,4
Ta.10-2 1,7
Distilled water Ra=7,2.10% R=0,15m; ¢g==3,4.10® w/m?
AT’deg 1,2 | 0,7 1,3 0,8 0,8 1,0 1,1 0,9
AT” deg 1,3 1,2 1,3 1,2 1,2 1,2 1,3 1.4 °
AT™deg 1,3 | 1,2 1,4 1,3 1,2 1,4 1,6 1,7
@ 1072 } 2,6 | 2,8 2,6 2,8 2,8 2,4 2,3 2,0
"2.10-2 2,58
Nu 1 T ’ﬁﬁ
/02 : — L /;J/ﬂ a M/ ‘
P —|"h | 8 o [s] [u]
s P e el A ,}— go <] a Jl o — f
-+ T.8 N ‘1 8 o o—2
s '9%’/‘)& | 8 —3
4 5 3
U
28 : ’
56 6 0° 2 4 6 80" 2 ¢ 6 @ nw” 2 Ra

Fig. 1. The dimensionless heat-transfer coefficient as a func-
tion of the Ra number: 1, 2) water, T = 30 and 60°, respectively,
with a vessel whose diameter is 0.3 m; 3) ethyl alcohol, T = 30°,
in a vessel whose diameter is 0.3 m; the filled dots correspond
to the data derived for a vessel with a diameter of 0.15 m.

Table 2 shows the values of f as functions of Ra.

Let us examine the second special case —the quasisteady free convection in an infinitely long hori-
zontal cylinder at whose surface a constant heat-flux density is specified. In this case

ro(x)=1, Ox)=sinx, g=1, y=2

and the equation for §.
0.017113095 Ra §° + 4n8 — 2m = 0. (14

The roots of Eq. (14) were calculated by the Mueller method on an M~-20 computer for Ra = 107-10!
Equation (14) has four complex roots and one real root; Iné is a linear function of InRa:

Nu = 0.711 Ra>"**, (15"
§ = 2.81 Ra~™"9*%, (15m

We undertook an experimental investigation of the free convection in a spherical space completely
filled with a liquid, using two spherical vessels having diameters of 0.15 and 0.3 m, with boundary condi-
tions of the second kind. The experimental method is described in [6]. The studies were performed with
distilled water at an initial temperature of 20 and 50° and on ethyl alcohol (with a concentration of 96%) and
an initial temperature of 20°, with heat-flux densities ranging from 1.7 -10* W/m? to 1.8 -10° W/ m?, in a
Rayleigh number range of 1.5 -10° =<Ra =3.2-10'L.

The investigations revealed that the temperature distribution is symmetrical with respect to the verti-
cal axis and that the heat-transfer process atthe "wall —liquid" boundary at a constant heat-flux density is
quasisteady in nature, since on elapse of a brief time interval following the onset of the process a constant
time -averaged temperature difference is established in the thermal boundary layer for each point of the
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surface of the sphere and the heating curves for the corresponding points of the liquid and the shell, situated
at the edge of the boundary layer, represent parallel straight lines *

The maximum time interval in which the boundary layer is formed corresponded in our tests to a
Fourier number equal to 4-107%. In the ideal case, i.e., in the absence of heat resistance on the part of the
shell and with no heater inertia, the indicated time will evidently be even smaller.

Analysis of the temperature distribution through the thickness of the thermal boundary layer for
various regions of the boundary shows that the intensity of the heat transfer over the greater portion of
the "wall—liquid"boundaryis identical, since we observe no significant difference, whether in the thickness
of the boundary layer (Table 3), or in the magnitude of the temperature difference through the layer. A
slight exception is represented by the upper region of the sphere, where the value of the heat-transfer
coefficient is reduced by 10-15% for x = 160°and by 15-20% for x = 180°. The reduction in the intensity of
the heat transfer in the upper region of the space can be explained by the effect of surface-heating orienta-
tion.

Since the reduction in the heat-transfer coefficient in the upper region (160° =x = 180°) is insignifi-
cant and since the region itself is small, we can describe the process of heat transfer at the boundary of
the space by an integral heat-transfer coefficient defined as follows:

@ = lE'_:L, (16)
n AT, (x)

i=]

where ATi is the time-averaged temperature difference across the boundary layer for a given angle x;
x is the coordinate angle in the spherical system of coordinates; n is the number of measurement point.

Table 3 shows the values for the temperature difference across the boundary layer for various regions
of the boundary, and for the local and integral heat-iransfer coefficients for two experiments. Here AT,
AT", and AT" are the values of the temperature differences across the boundary layer at distances of 1, 2,
and 5 mm from the shell, respectively.

The function for the integral heat-transfer coefficient in the Rayleigh number interval 3.5 -10% < Ra
< 10'! shown in generalized coordinates in Fig. 1 has the form

Nu = ARa*, | (17)
where A = 0.7 £ 0.1 andk = 0.2 + 0.01.

Function (17) was obtained on the M~20 computer by the method of least squares, after processing
more than 400 experimental points. The experimental points on the curve for Ra > 10!! were not taken into
consideration, because of the possible change in the heat-transfer regime at Rayleigh number values in
excess of 10,

The dashed line in Fig. 1 shows the plotting of (13").

Comparison of the values of the heat-transfer coefficients calculated from (13") and (17) shows that
the assumptions adopted in the development of the theoretical model are valid for the greater portion of the
volume. Because the theoretical relationship was derived for an entire class of liquids characterized by a
Pr number on the order of unity, function (17) can also be extended to the entire class of similar fluids for
a Rayleigh number range from 107 to 10!l.

NOTATION

is the temperature;

is the average-volume temperature;

is the coefficient of thermal diffusivity;
is the coefficient of kinematic viscosity;
is the coefficient of volume expansion;

w8 HiH

*The time-averaged temperature difference in this case is understood to refer to the difference averaged

over the time interval substantially smaller than the time required to perform the test. The need to speak
of a time-averaged temperature difference for the thermal boundary layer results from the fluctuations in
temperature noted within the limits of this layer [6].
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g is the acceleration of the force of gravity;
R is a characteristic linear dimension;
q is the heat-flux density;
S is the surface area;
v is the vessel volume;
v is the velocity;
p is the pressure;
u=vg, V=V
P is the density;
o is the heat-transfer coefficient;
o is the integral heat-transfer coefficient;
f is the value of the projection of the longitudinal velocity component of the core onto the
x-axis at the edge of the boundary layer;
® (x) is the projection of the acceleration of the force of gravity onto the x-axis;
T ({x) is the radius of curvature for the meridional cross section of the vessel;
t is the Fourier number;
Nu =&R/ A is the integral heat-transfer coefficient (the Nusselt number);
Gr = gBR% /A  is the modified Grashof number;
Pr is the Prandtl number;
Ra = GrPr;
Q = [qds;
N
h is the thickness of the thermal boundary layer;
8 =h/R;
X,y are, respectively, the longitudinal and transverse coordinates in the coordinate system
associated with the surface of the vessel;
X,Y,Z are Cartesian coordinates.
All of the quantities in the theoretical portion of this paper are dimensionless.
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