
STUDYING THE FREE CONVECTION IN CLOSED 

AXISYMMETRIC SPACES 

Yu. A. Kirichenko, V. N Shehelkunov, 
and P. S. Chernyakov 

UDC 536.25 

We have developed an analytical method of calculating the heat-transfer coefficients, the 
boundary-layer thicknesses, and the temperature and velocity distributions in the boundary 
layer for the quasisteady free convection in closed axisymmetric spaces for a given heat- 
flux density at the boundary. We have derived experimental relationships for the heat- 
transfer coefficient in the case of free convection in a sphere. 

Very little research has been done on the free convection in closed spaces at whose surfaces the heat- 
flux density is known. In [i] we find an investigation of convection in a sphere for a laminar regime, with 
the sphere heated by steam; in [2] the study deals with convection between two spheres. 

Let us examine a closed axisymmetric vessel filled with an incompressible viscous fluid exhibiting an 
initial temperature T 0. Let the heat-flux density q be specified at the vessel surface S for t > 0; x and y 
are, respectively, the longitudinal and transverse coordinates, associated with the surface of the vessel. 

We assume that the following conditions are satisfied: 

a) the flow of the liquid is quasisteady, laminar, axisymmetric, or plane; 

b) the Grashof number is substantially greater than unity and the Prandtl number is on the order of 
unity ; 

e) the entire area occupied by the liquid can be divided into two subregions: the boundary layer of 
thickness 5 and the main core; 

d) the liquid flow in the core is ideal; 

e) the temperature of the core is equal to the mean-volume temperature of the liquid; 

f) the thickness of the thermal boundary layer is equal to the thickness of the dynamic boundary layer; 

g) the thickness of the boundary layer is a constant quantity; 

h) the thermophysical properties of the liquid are independent of temperature. 

We will seek the liquid temperature T and the liquid velocity v in the following form: 

T =  To@ yt-k'~(X, Y, Z), 
v = v (X,  y ,  Z), (1) 

where  X, Y, and Z a re  C a r t e s i a n  c o o r d i n a t e s ;  y = Q / V .  

Having  subs t i t u t ed  (1) into the equa t ion  for  nons teady  f ree  convec t ion  [3] and us ing  hypo theses  a) 
through g), as  wel l  as b o u n d a r y - l a y e r  theory  [4], we de r ive  the fol lowing equa t ions :  

Ou Ou O~u 
u - -  + v - -  = Pr + Gr Pr ~ ~r (x), (2 ') 

o~ oy oy ~ 
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Or OT 0~ 
u - -  -}- v - y, (2 ") 

Ox 01] Oy ~ 

0 Ov = 0 (2") 
O~-x (ur~ (x)) + ro (x) 01] 

and the boundary  condi t ions  

0// y=5 ul~,=o = O, vl~=o = O, uly=~ = f, -~y = O, 

(3) 
, O~ ----0, O'v u=o ~lu=6 = O, ~ y  u=o -~y = - - q ( x ) .  

Here  it is a s s u m e d  that  the hea t  f r o m  the wal l s  is t r a n s p o r t e d  to the boundary  l a y e r  and we then have a 
t r a n s f e r  of m a s s  and hea t  f r o m  the boundary  l a y e r  to the c o r e .  

We will  use the method  of in tegra l  r e l a t ionsh ips  [4] to solve p r o b l e m  (2)-(3). 

The prof i le  f o r  the t e m p e r a t u r e  ~- will  be sought  in the fol lowing f o r m :  

x = % -I- Ti ~ -  + "r2 -~ ~3 + "ra . (4) 

We find the coef f i c ien t s  70, ~'l, T2' T3, and ~'4 f r o m  the fol lowing condi t ions :  

O'~ = O, --02~ u=6 
%,=~ = O, - ~ y  ~=o ay ~ = v,  

o~ u=o = -- q (x), 09-L u=o 
0!] Of  -= ~l. 

(5) 

Condi t ions  02~ = y, = ~/ a r e  found by subs t i tu t ion  of (3) into (2"). 
Og ~ Of  ly=o 

Subst i tut ing (4) into (5), we find 

6 V62 
% = - ~  q, ~ i = - - q 6 ,  x 2 ~  2 ' 

6 
% = 6 ( q - - y 6 ) ,  x 4 = ~ -  (Y6--q)" 

(6) 

We seek  the prof i le  of  the  longi tudinal  ve loc i ty  componen t  in the f o r m  

/J:A0-~A 2 (--~')1 Al-'i (-~)2 ~-A3 (~)3. 

We find the coe f f i c i en t s  A 0, fl ,  A2, and A~ f r o m  the condi t ions  

Ou = O, ulu= 8 = f ,  u]u= o=0 ,  ~-y u=8 

Og ~02u ~=o = Gr Pr2 q)6q 

(7) 

(8) 

The condi t ion  Og ~ O~u u=o -- Gr Pr2 (I)q6 is found by subs t i tu t ing  (3) into (2'). 

Subst i tu t ing (7) into (8) y ie lds  

3 1 1 Gr Pr 63q(I), A 3 1 Ai _ _  1 
A2 = -2- f - -  - 2  f~' f '  -- 4 = - -  - 2  -2- f '  

(9) 
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TABLE i. Values of  the Integral Heat-Transfer Coefficients and 

the Thicknesses of the Thermal Boundary Layer as Functions of 

the G rashof and Prandtl Numbers 

Pr  

Ra 

I0' I0 a 10 9 10 u 

0,0847 
0,0846 
0,0846 
0,0846 

Nu 

23,61 
23,64 
23,64 
23,65 

0,0549 
0,0549 
0,0548 
0,0548 

Nu 

36,41 
36,45 
36,46 
36,47 

0,0352 
0,0352 
0,0352 
0,0352 

Nu 

56,75 
56,80 
56,82 
56,84 

0,0143 
0,0143 
0,0143 
0,0143 

Nu 

140,14 
140,26 
140,30 
140,30 

T A B L E  2. V a l u e  of  the  L o n g i t u d i n a l  V e l o c i t y  

C o m p o n e n t  f o r  t h e  C o r e  a t  t h e  E d g e  of  the  

T h e r m a l  B o u n d a r y  L a y e r  

Ra 10 T 10" 10 s l0 n 

f 324,5 855,1 2176 13360 

Substituting (4) into (I0), we obtain 

We integrate (2 ~) and (2")with respect to y from 

0 to 6, using hypothesis h) and, having substituted into 

the derived equations (4) and (9), we obtain a system 

of two algebraic equations for 6 and f. 

We calculate the dimensionless integral coef- 

ficient of heat transfer on the basis of the formula 

0 ~  y = o  

Nu = Oy (10) 
TJy=O 

2 
Nu = - -  (11) 

6 

On the basis of hypothesis g), in this case all of the dimensionless local heat-transfer coefficients are equal 
to the dimensionless integral heat-transfer coefficient. 

Let us examine a special case of this problem - the quasisteady free thermal convection in a sphere 
at whose surface a constant heat-flux density is specified. 

In this case 

q (x) = 1, ro (x) = sin x, �9 (x) = sin x, ,g = 3, Ra = - -  Gr Pr. 

T h e  e q u a t i o n s  f o r  6 a n d  f in  t h i s  c a s e  h a v e  the  f o r m  

O 
f _ _  " i  

P2 ' 

- -  0.557143 62Pt (6) + Pt (6) P2 (8) [6 Pr  - -  0.535715.10 -2 Ra 6 ~] 

_ R a P r  5s p~(5) q___~_ ~ RaPr54P2(5 )  q - ~ R a P r P ~ ( 5 )  S a = 0 ,  
1680 20 40 

(12') 

(12 ") 

w h e r e  

PI (5) = - -  0.1339285" 10 -2 Ra 66 + 0.017113095 Ra 5 ~ - -  2 + 66; 

P2 (5) = 52 [1,15535715 - -  0.066071435]. 

The rooLs of Eq. (12") were calculated on the M-20 computer in accordance with the Mueller method 
[5] Ra - 107-1011 and Pr = 1-5. As a result of the calculations we found that (12") has eight complex roots 

and four real roots, one of which is less than unity. This smallest real root of (12") was taken as the thick- 

ness of the thermal boundary layer. The results from the calculation of the thermal boundary-layer thick- 
ness 6 and for Nu are shown in Table i. 

We see from Table 1 that the heat-transfer coefficient is virtually an exclusive function of the Ray- 
leigh number. Using the data of Table i, we can demonstrate that a linear relationship exists between 
InNu and InRa. As a result of the processing of these data, we find that 

Nu = 1.044 Ra ~ (13 ' )  

6 = 1.92 Ra -~  (13")  
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TABLE 3. T e m p e r a t u r e  D i s t r i b u t i o n  in  the T h e r m a l  Boundary  

L a y e r  and the Values  of the H e a t - T r a n s f e r  Coeff ic ients  

x ~ 0 22,5 45 67,5 112,5 135 157,5 I80 

~-T'deg 
A T"deg 
AT mdeg 
a.10 -~ 

Ethylalcohol, Ra=l,8.10u; R=0,15m; 

4,2 4,6 4,1 3,1 3,8 
4,7 4,8 4,7 4,9 5 
4,7 4,8 4,7 4,9 5 
1,8 1,7 1,8 1,7 1,7 

~=8,4.10 2 W/m z 

4,5 3,5 
4,5 3,8 
5 5,3 
1,8 1,6 

3,9 
4,6 
6,0 
1,4 

a.lO-2 

~ ' d e g  
~ "  deg 
AT~'deg 
a.lO-2 

1,7 

Distilledwater Ra=7,2.109; 

1,2 0,7 1,3 0,8 
1,3 1,2 1,3 1,2 
1,3 1,2 1,4 1,3 
2,6 2,8 2,6 2,8 

R=O,15m; q=3,4.102W/m z 

0,8 1,0 1,1 
1,2 1,2 1,3 
1,2 1,4 1,5 
2,8 2,4 2,3 

0,9 
1,4 " 
1,7 
2,0 

-~. 10 -2 2,58 

t0 

~- ! - . 7 . 'L f f - - r  I z I vI I ~ - - - - I  I I 1 2 - ~ i  I 

5 6 8 I0 ~ 2 o 6 8 I0 ~~ 2 4, 5 8 /O '# 2 I?a 

Fig. i. The dimensionless heat-transfer coefficient as a func- 

tion of the Ra number: i, 2) water, T = 30 and 60 ~ respectively, 

with a vessel whose diameter is 0.3 m; 3) ethyl alcohol, T = 30 ~ 

in a vessel whose diameter is 0.3 m; the filled dots correspond 

to the data derived for a vessel with a diameter of 0.15 m. 

Table 2 shows the values of f as functions of Ra. 

Let us examine the second special case - the quasisteady free convection in an infinitely long hori- 

zontal cylinder at whose surface a constant heat-flux density is specified. In this case 

r 0 ( x ) = l ,  q~ (x) = sin x, q = l ,  y = 2  

and  the equa t ion  for  6. 

0.017113095 Ra 6 ~ -~ 4~5 - -  2re = 0. (14) 

The roo t s  of Eq.  (14) we re  ca l cu l a t ed  by the lViueller method  on a n  M-20  c o m p u t e r  for  Ra = 107-1011 

E q u a t i o n  (14) has  four  complex  roo ts  and one r e a l  root ;  In5  is  a l i n e a r  func t ion  of i n R a :  

Nu = 0.711 Ra ~ (15') 

: 2 . 8  1 t~a  -0"  1943 (15") 

We unde r took  an  e x p e r i m e n t a l  i n v e s t i g a t i o n  of the f ree  convec t ion  in  a s p h e r i c a l  space  c o m p l e t e l y  
f i l l ed  with a l iqu id ,  us ing  two s p h e r i c a l  v e s s e l s  hav ing  d i a m e t e r s  of 0.15 and 0.3 m ,  with b o u n d a r y  c o n d i -  
t ions  of the second  k ind .  The e x p e r i m e n t a l  method  is  d e s c r i b e d  in [6]. The s tud ies  we re  p e r f o r m e d  with 
d i s t i l l e d  w a t e r  at  an  i n i t i a l  t e m p e r a t u r e  of 20 and 50 ~ and on e thyl  a lcohol  (with a c o n c e n t r a t i o n  of 96%) and 
an in i t i a l  t e m p e r a t u r e  of 20 ~ with hea t - f l ux  d e n s i t i e s  r a n g i n g  f r o m  1.7 �9 102 W / m  2 to 1.8 �9 10 a W / m  2, in a 
Ray le igh  n u m b e r  r ange  of 1.5 �9 108 -< Ra -< 3.2 �9 10 t l .  

The i n v e s t i g a t i o n s  r e v e a l e d  that the t e m p e r a t u r e  d i s t r i b u t i o n  is s y m m e t r i c a l  with r e s p e c t  to the v e r t i -  
ea l  axis  and that  the h e a t - t r a n s f e r  p r o c e s s  at  the " w a l l - l i q u i d "  bounda ry  at  a cons t an t  h e a t - f l u x  de ns i t y  is  
q u a s i s t e a d y  in n a t u r e ,  s ince  on e l apse  of a b r i e f  t ime  i n t e r v a l  fol lowing the onse t  of the p r o c e s s  a cons t an t  
t i m e - a v e r a g e d  t e m p e r a t u r e  d i f f e r ence  is  e s t a b I i s h e d  in the t h e r m a l  bounda ry  l a y e r  for  each  point  of the 
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surface of the sphere and the heating curves for the corresponding points of the liquid and the shell, situated 
at the edge of the boundary layer, represent parallel straight lines.* 

The maximum time interval in which the boundary layer is formed corresponded in our tests to a 
Fourier number equal to 4-10 -4. In the ideal case, i.e., in the absence of heat resistance on the part of the 

shell and with no heater inertia, the indicated time will evidently be even smaller. 

Analysis of the temperature distribution through the thickness of the thermal boundary layer for 
various regions of the boundary shows that the intensity of the heat transfer over the greater portion of 
the "wall-liquid" boundaryis identical, since we observe no significant difference, whether in the thickness 
of the boundary layer (Table 3), or in the magnitude of the temperature difference through the layer. A 
slight exception is represented by the upper region of the sphere, where the value of the heat-transfer 
coefficient is reduced by 10-15% for x = 160 ~ and by 15-20% for x = 180 ~ The reduction in the intensity of 
the heat transfer in the upper region of the space can be explained by the effect of surface-heating orienta- 
tion. 

Since the reduction in the heat-transfer coefficient in the upper region (160 ~ -< x -< 180 ~ is insignifi- 
cant and since the region itself is small, we can describe the process of heat transfer at the boundary of 
the space by an integral heat-transfer coefficient defined as follows: 

- I ~'~ q 
= --~ ~ , ~  -A~  (x) ' (16) 

~ l  

w h e r e  AT i i s  the t i m e - a v e r a g e d  t e m p e r a t u r e  d i f f e r e n c e  a c r o s s  the b o u n d a r y  l a y e r  f o r  a g iven  angle  x; 
x is  the c o o r d i n a t e  ang le  in the s p h e r i c a l  s y s t e m  of c o o r d i n a t e s ;  n i s  the n u m b e r  of m e a s u r e m e n t  po in t .  

T a b l e  3 shows  the v a l u e s  fo r  the t e m p e r a t u r e  d i f f e r e n c e  a c r o s s  the b o u n d a r y  l a y e r  fo r  v a r i o u s  . regions 
of the b o u n d a r y ,  and f o r  the l o c a l  and i n t e g r a l  h e a t - t r a n s f e r  c o e f f i c i e n t s  fo r  two e x p e r i m e n t s .  H e r e  A T ' ,  
A T " ,  and AT,,, a r e  the v a l u e s  of  the t e m p e r a t u r e  d i f f e r e n c e s  a c r o s s  the b o u n d a r y  l a y e r  a t  d i s t a n c e s  of  1, 2, 
and  5 m m  f r o m  the s h e l l ,  r e s p e c t i v e l y .  

The func t ion  fo r  the i n t e g r a l  h e a t - t r a n s f e r  c o e f f i c i e n t  in the R a y l e i g h  n u m b e r  i n t e r v a l  3 . 5 . 1 0  8 < Ra 
< 10 i l  shown in g e n e r a l i z e d  c o o r d i n a t e s  in F i g .  1 has  the f o r m  

Nu = A Ra ~ , (17) 

w h e r e  A = 0.7 • 0.1 and k = 0.2 �9 0.01. 

Function (17) was obtained on the M-20 computer by the method of least squares, after processing 
more than 400 experimental points. The experimental points on the curve for Ra > 1011 were not taken into 
consideration, because of the possible change in the heat-transfer regime at Rayleigh number values in 
excess of i0 II. 

The dashed line in Fig. 1 shows the plotting of (13 9. 

Comparison of the values of the heat-transfer coefficients calculated from (13') and (17) shows that 
the assumptions adopted in the development of the theoretical model are valid for the greater portion of the 
volume. Because the theoretical relationship was derived for an entire class of liquids characterized by a 
Pr number on the order of unity, function (17) can also be extended to the entire class of similar fluids for 
a Rayleigh number range from i07 to i0 II. 

NOTATION 

T is  the t e m p e r a t u r e ;  
i s  the a v e r a g e - v o l u m e  t e m p e r a t u r e ;  

a i s  the c o e f f i c i e n t  of  t h e r m a l  d i f f u s i v i t y ;  
u i s  the c o e f f i c i e n t  of k i n e m a t i c  v i s c o s i t y ;  
fl is  the c o e f f i c i e n t  of v o l u m e  e x p a n s i o n ;  

*The t i m e - a v e r a g e d  t e m p e r a t u r e  d i f f e r e n c e  in th is  c a s e  is  u n d e r s t o o d  to r e f e r  to the d i f f e r e n c e  a v e r a g e d  
o v e r  the t ime  i n t e r v a l  s u b s t a n t i a l l y  s m a l l e r  than the t ime  r e q u i r e d  to p e r f o r m  the t e s t .  The need  to s p e a k  
of a t i m e - a v e r a g e d  t e m p e r a t u r e  d i f f e r e n c e  fo r  the t h e r m a l  b o u n d a r y  l a y e r  r e s u l t s  f r o m  the f l uc tua t i ons  in 
t e m p e r a t u r e  no ted  wi th in  the l i m i t s  of th i s  l a y e r  [6]. 
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g 

R 
q 
S 

V 
v 

P 
U = V x,  V = Vy; 

P 

f 

r  
ro(x) 
t 
Nu = ~ R / X  
G r = gfiR4q / v2k 
P r  
Ra = G r P r ;  

Q = f q d s ;  
$ 

h 
5 = h / R ;  
x , y  

X , Y , Z  

is  the a c c e l e r a t i o n  of the force  of g r a v i t y ;  
is  a c h a r a c t e r i s t i c  l i n e a r  d i m e n s i o n ;  
is the h e a t - f l u x  dens i t y ;  
is  the su r f ace  a r e a ;  
is the v e s s e l  v o l u m e ;  
is the ve loc i ty ;  
is  the p r e s s u r e ;  

is the density; 
is the heat-transfer coefficient; 
is the integral heat-transfer coefficient; 

is the value of the projection of the longitudinal velocity component of the core onto the 
x-axis at the edge of the boundary layer; 
is the projection of the acceleration of the force of gravity onto the x-axis; 
is the 
is the 
is the 
is the 
is the 

r a d i u s  of c u r v a t u r e  for  the m e r i d i o n a l  c r o s s  s e c t i on  of the v e s s e l ;  
F o u r i e r  n u m b e r ;  
i n t e g r a l  h e a t - t r a n s f e r  coef f ic ien t  (the N usse l t  n u m b e r ) ;  
modi f ied  G r a s h o f  n u m b e r ;  
P r a n d t l  n u m b e r ;  

is the thickness of the thermal boundary layer; 

are, respectively, the longitudinal and transverse coordinates in the coordinate system 
associated with the surface of the vessel; 
are Cartesian coordinates. 

All of the quantities in the theoretical portion of this paper are dimensionless. 
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